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Spatial stability of the non-parallel Bickley jet 
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(Received 26 November 1979) 

The spatial stability of the plane, two-dimensional jet flow to infinitesimal disturbances 
is investigated by taking into account the effects of transverse velocity component and 
the streamwise variations of the basic flow and of the disturbance amplitude, wave- 
number and spatial growth rate. This renders the growth rate dependent on the flow 
variable as well as on the transverse and streamwise co-ordinates. Growth rates for 
the energy density of the disturbance and the associated neutral curves are provided 
as a function of the streamwise co-ordinate. Variation of growth rate of the disturbance 
stream function and streamwise component of velocity with the transverse co- 
ordinate is also given for different disturbance frequencies and streamwise locations. 
Results are compared with those for the parallel-flow stability analysis, and also with 
those for an analysis that accounts for only some of the non-parallel effects. It is found 
that the critical Reynolds number based on the growth of energy density of the 
disturbance depends on the streamwise co-ordinate and lies within the range (around 
20) found experimentally, while the parallel-flow theory yields a rather low value 
of 4.0. 

1. Introduction 
The stability characteristics of the Bickley jet have been studied extensively. 

However, most of the studies (Curle 1957; Tatsumi & Kakutani 1958; Clenshaw & 
Elliot 1960; amongst others) treat the jet as a quasi-parallel flow and apply the 
parallel-flow stability theory only. This results in a critical Reynolds number for the 
jet flow of 4.0. Obviously at such low Reynolds numbers, the parallel-flow assumption 
cannot be expected to hold since the transverse velocity component as well as the jet 
spread and streamwise variations of the mean flow are not negligible. It is therefore 
essential to consider the jet as non-parallel flow for the stability analysis. 

The difficulty in solving for the stability characteristics of a non-parallel flow lies in 
the evaluation of the eigenvalues of a set of partial differential equations. To overcome 
this difficulty it is generally assumed that the non-parallel effects are of higher order. 
This has led to several attempts in the last decade or so to find the stability charac- 
teristics of such non-parallel flows as the Blasius boundary layer (Barry & Ross 1970; 
Bouthier 1972,1973; Ling & Reynolds 1973; Gaster 1974; Saric & Nayfeh 1975; Smith 
1979), the divergent channel flow (Eagles & Weissman 1975), the developing axisym- 
metric jet (Crighton & Gaster 1976), the slowly varying flow between concentric 
cylinders (Eagles 1977) and the two-d,imensional jet and flat-plate wake (Ling & 
Reynolds 1973). For the Bickley jet; Haaland (1972) and Bajaj & Garg (1977) 
accounted for only some of the non-parallel effects. In  their model, the governing 
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equations are separable and reduce to a modified Orr-Sommerfeld equation. All the 
non-parallel effects were taken into account by Ling & Reynolds (1973) for the Bickley 
jet. However, they considered the temporal rather than the more realistic spatial 
stability problem, and expanded the stream functions of the basic flow and of the 
disturbance along with the eigenvalues in a power series about a given streamwise 
location. Their analysis is therefore valid only for a small neighbourhood of that 
streamwise location. It also neglects downstream variation of the vertical structure of 
the Orr-Sommerfeld solutions (Gaster 1974). 

Herein, we follow Bouthier (1972) and present a non-parallel stability theory for 
the Bickley jet. This approach provides for perturbations in the wavenumber and 
spatial growth rate for fixed frequency and Reynolds number; it also yields the local 
distortion and streamwise variations of the eigenfunction, the wavenumber and the 
spatial growth rate. 

A complication for non-parallel flow is that the various disturbance flow quantities 
such as the stream function, velocity components, pressure) etc. have different growth 
rates, and these growth rates are functions of the transverse co-ordinate. This rather 
surprising situation, in comparison with parallel-flow theory, was demonstrated by 
Bonthier (1973) using essentially the same method as we use here. For a measure of 
instability of the Bickley jet, we follow Shen (1961) in using the growth rate of the 
disturbance mean kinetic-energy density, averaged over time and integrated across 
the jet. 

2. Analysis 
For the stability analysis of a two-dimensional, steady, incompressible jet described 

by the stream function $, we take the X co-ordinate along the jet axis and Y normal 
to it, and introduce dimensionless variables with respect to a reference length L, 
a reference velocity U,, and fluid density p, so that x = ( X - X , ) / L ,  ( X ,  being an 
arbitrary distance downstream of the origin on the jet axis), y = Y / L ,  etc. Taking the 
stream function of the disturbance as $'(x, y, t ) ,  the Navier-Stokes equation, after 
subtracting the mean flow quantities and neglecting the non-linear terms in $', yields 

where R( = U , L / v )  is the Reynolds number; v being the constant kinematic viscosity 
of the fluid. While (2.1) is valid for an infinitesimal disturbance applied to any two- 
dimensional basic flow, the boundary conditions depend on the particular flow. For 
the jet flow under consideration, these are 

where D = a/ay. 

in the axial direction, such that 
Considering the jet flow as nearly parallel, we introduce an independent variable x1 

XI = €X) (2.3) 
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where e is a small dimensionless parameter characterizing the non-parallel nature of the 
basic flow; 6 = 0 for truly parallel flows. The parameter E depends on the flow under 
study and may be related to R .  Also, x1 and x are the so-called slow and fast scales, 
respectively. In  the expansions that follow, we treat e and R as independent parameters 
though they are related. By treating them as independent we are in effect solving the 
problem in the e, R plane, whereas in reality we need only to solve the problem on a 
line. The real solution is, therefore, contained in the family of fictitious extensions 
over all E ,  R. 

The velocity components of the basic flow can be written in terms of the stream 
function $(xl, y) as 

and - 

3! = U(x,,y) 
aY 

ax 8x1 
-8- = sV(x,,y). .- = 

Since the coefficients of the derivatives of 9’ in (2 .1)  are functions of x, and y only, the 
disturbance stream function may be taken as 

where a6 ae 
= k,(x,), - at = - W .  

Here w is the real dimensionless frequency of the disturbance. The real part of k, is the 
dimensionless wavenumber, and the imaginary part of k, is the spatial growth rate of 
the disturbance. Thus, the slow scale is used to describe the relatively slow variation 
of the basic flow, the wavenumber, spatial growth rate, and disturbance amplitude, 
while the fast scale is used to describe the relatively rapid, streamwise variation of the 
travelling-wave disturbance. 

In terms of x1 and 8, the temporal and spatial derivatives transform according to 

Substituting (2 .5 )  and (2 .6)  into (2 .1)  and (2 .2 ) ,  using (2 .4) ,  andequating coefficients of 
like powers of E ,  we obtain the following. 

Order E’: 

L(#o) E [ (D2 - kg)2 - iR{(ko U - W )  (D2 - kg) - k o B  2u } 190 = 0,’) 
( 2 * , )  q50-+0, D9,-+0 as y+-+ao. 

Order E :  

L(91) = f l , ( 2 . 8 ~ )  

q51+-0, D+,+O as y-ffco, (2 .8b)  
where 

+ b, D#o + V P 9 ,  + (b4#o - 2iD2#,/R) 

b, = 2k0w - 3Ukg - 0 2  U + 4 ik t /R , )  

(2 .8d)  

b, = w - 3k0 U + Gik;/R. I 
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The eigenvalue problem in (2.7) is the familiar Om-Sommerfeld problem for 
parallel flows while (2 .8 )  provides the additional problem arising from the non- 
parallel effects. The first two terms on the right-hand side of ( 2 . 8 ~ )  represent the effects 
of the streamwise variation of the disturbance amplitude, the third and fourth terms 
represent the effects of the transverse mean velocity component, and the last term 
represents the effects of the streamwise variation of the wavenumber and spatial 
growth rate. 

3. Solution 
The slow scale x1 appears implicitly in (2.7). For a given w, R and U(x,,y), the 

eigenvalue problem (2.7) can be solved numerically to determine the eigenvalue ko(xl), 
and the solution g50(x1, y) may be expressed as 

(3.1) 

where 6 is the eigenfunction, and the amplitude function C is unknown at  this level of 
approximation. It will be determined to within a multiple at the next level of approxi- 
mation. For a truly parallel flow, C would be a constant and (3.1) would be the com- 
plete solution. 

For the solution of the inhomogeneous problem in (2.8), we invoke the solvability 
condition that the inhomogeneous terms be orthogonal to every solution of the 
adjoint homogeneous problem, that is 

90 = C(z1) Ek% x1), 

m [ S.$*dy= 0, 
J --m 

where C*(y; x,) is the eigenfunction corresponding to the eigenvalue ko of the adjoint 
problem 

L*([*) = ( 0 2 -  ki)"* - iR[(ko u - w )  ( 0 2 -  ki) E* + 2kODUD5*] = 0, ( 3 . 3 4  

E * + O ,  DE*-+O as y-+-+m. (3.3b) 

Substituting for S from ( 2 . 8 ~ )  into (3.2) and using (3.1), we get the following equation 
for C(xl), 

(3.4a) 

ikl = %(xl>/al(~l), (3.4b) 

dC - = ikl(xl)C, 
ax1 

where 

(3.44 

(3 .44  

the first term in ( 3 . 4 4  having been obtained by integration by parts. The solution of 
( 3 . 4 ~ )  is 

(3.5) C(xl) = Co exp [iJkl(xl) dxll = 0, exp [{eJkl(x1) dx] , 
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where C, is a constant of integration. Thus, to first approximation, 

f = C,f(y; x l )  exp [ i / (k ,  + ekl) d x -  i d ] ,  (3.6) 

where 6 and k, are calculated at each axial location as if the baaic flow were parallel, 
and k, contains the effects of the transverse velocity component and streamwise 
variation of the mean flow, the eigenfunction E, and the eigenvalue k,. 

In order to determine a2(xl),  we need to evaluate aLJax, and dko/dxl. To do so, we 
differentiate L(6) = 0 with respect to  xl ,  and obtain 

with boundary conditions 

( 3 . 7 ~ )  

(3.7b) 

where 
el = iRk,[(k$ D V + D 3 V )  E - DVD2E], 

e2 = 4ko(D2E- kiE) +iR[UD2E+ (2k,w- 3k3 U- D 2 U )  51. 

The inhomogeneous problem in (3 .7)  is solved by invoking the solvability condition 
that yields 

Knowing dko/dxl from (3 .8) ,  it is a simple matter to evaluate 8LJ8xl from the inte- 
gration of ( 3 . 7 ~ ) .  

For a truly parallel basic flow, E is a function of y only, k,  = 0, and k, is a constant. 
Hence, the growth rate of any disturbance quantity, such as the velocity, the pressure, 
and the kinetic energy, is given uniquely by the imaginary part of k,. On the other 
hand, the effects of non-parallelism are to make k, a function of xl, to produce a cor- 
rection ek,(xl) to k,, and to make the mode shape vary in the streamwise direction. 
Hence, the streamwise variation of each flow quantity depends on its distance from 
the jet axis. Moreover, at each distance y ,  the different flow quantities vary differently 
in the streamwise direction, as we shall see in 5 5. 

4. Computational procedure 

(2.4),  are given by 
For the Bickley jet, the axial and transverse components of velocity, according to 

(4.1) 
where 

Since this velocity distribution results from the boundary-layer type of equations for 
the jet flow, it is obvious that e may be taken as R-t. The problem describing the 
eigenfunction 6 is 

Ut) = 0, (4 .2n)  

E + O ,  DC+O as y + f c a  (4.2b) 

1 U = f 4 mch2 fy, 
V = 2f(2jysech2fy-  tanhfy), 
f = (1 + ~ x / B * ) - * .  
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Since the jet flow is known to be more unstable to symmetric disturbances (Monin & 
Ysglom 1071), we may consider the additional conditions at the jet axis for such 
disturbances, as 

thereby, reducing the range of integration to 0 < y < GCI only. The fact that as 
y + & 00, the variable coefficients in ( 4 . 2 ~ )  become constant can be utilizedin obtaining 
analytical solution of the asymptotic form of ( 4 . 2 ~ ) .  Starting with this analytical 
solution, ( 4 . 2 ~ )  is integrated numerically toward the jet axis where satisfaction of the 
boundary conditions in (4.3) yields the eigenvalue k,. 

0 5  = 0 8 6  = 0 at y = 0, (4.3) 

The asymptotic form of (4.2n) is 

[ D 4 + ( i w R - 2 k i ) D 2 + k i ( k i - i ~ R ) ] f  = 0, (4.4) 

for as y + A 00, U + 0, D2U -f 0. The linearly independent solutions of (4.4) that 
satisfy (4.2b) a t  y = co are 

f l =  exp(-k,y), g2 = exp(-a,y), a. = (@-iwB)+. (4.5) 

Given w and R, and starting with a guess for k, (taken from Bajaj & Garg 1977, figures 4 
and 6) ,  and the asymptotic solutions in (4.5) at y = ym, where ym is some large value of 
y where conditions applicable to y = og may be assumed, Gill's variation of the Runge- 
Kutta method is used to integrate ( 4 . 2 ~ )  to y = 0, where owing to (4.3), the following 
condition miist hold 

The initially assumed value of k, is iterated until (4.6) is satisfied. The eigenfunction E 

With k, known, a procedure similar to the one above is used to solve (3.3) for f * ;  
the difference being that no iteraction is required since the adjoint problem has the 
same eigenvalues as the original problem. This, in fact, serves as a good check on the 
accuracy of the calculated eigenvalues. It may be noted that the asymptotic form of 
( 3 . 3 ~ ~ )  is the same as (4.4) for f ,  so that (4.5) also gives the linearly independent solu- 
tionsfor f* at y 2 ym. For some initial test cases, it was found that at least six significant 
figures in the eigenvalues of the original and adjoint problems were the same. Later 
only eigenvalue of the original problem was used to compute adjoint eigenfunctions. 

With k,, f ,  and f*  known, dk,/dxl is calculated from (3.8) and ( 3 . 7 ~ ) .  The values of 
a.!Jax, are then given by the integration of ( 3 . 7 ~ )  from y = ym to y = 0 ;  the necessary 
starting value at y = ym being given by the differentiation of f in (4.7) as 

As a check on this procedure, (4.2) was solved at  three axial locations for constant w 
and R, yielding k,(x,) and f ( y ;  x,) in each case. Using forward differences, 6ko/Sx, and 
8[/8xl were calculated. It was found that the values of Sk,/Sx, and dk, /ds ,  mere in 
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agreement to within computational accuracy; also, S[/8xl and afJ8xl were in agreement 
at every point in the flow domain; at least six significant figures being the same. 

Calculations were performed in double precision mode on a DEC 1090 computer. 
The distance ym from the jet axis, where the asymptotic form of the solution is assumed 
to hold, was taken to be 6.0 a t  x1 = 0 and increased appropriately for larger x1 while 
the step size for Gill's variation of the Runge-Kutta method waa taken as 0.04. For 
numerical integration, the third-order composite Newton-Cotes quadrature formula 
(Hildebrand 1974, p. 93) was used. For the determination of d h / d q ,  Axl was taken to be 
0.001 and it was noticed that both central and forward differences resulted in at least 
six correct significant figures for Sh/8x1. It was also found that reducing the step size in 
either x or y direction by a factor of two resulted in at least six same significant figures. 
No filtering technique was necessary to keep the two solutions (say f l  and &) linearly 
independent owing to the low Reynolds numbers involved. 

5. The growth rates 

given by ( 3 . Q  which may be rewritten as 

where a = k, + ckl. 

To the first approximation, i.e. to O(s) ,  the stream function of the disturbance is 

9' = ~,,f(y; x,)exp[i~udz-iwt], (5.1) 

IVl = P o l  18Y; Xl)leXP(-~ai~x)Y 

The amplitude of this stream function that may be observed in an experiment is 

(5.2) 

where ui is the imaginary part of a. We define a growth rate based on @' in x space as 

1 a l s l l  gv 2 --. 
Is'l ax 

using (5.2), (5.3) becomes 

We see that the growth rate of the stream function is dependent on the streamwise 
and transverse co-ordinates since I f 1  is a function of both x1 and y. Also, when 
kOi = 0, i.e. at  the neutral points determined by the parallel flow theory, there is still 
growth or decay due to the higher-order effects. Thus, the higher-order corrections are 
essential in determining the correct neutral points. 

Another feature of the O(E) corrections is that the growth rate is different for 
different flow quantities. Consider, for example, the x component of disturbance 
velocity, given by 

ap af 
4 ay u = - =  C, - exp [i I a d x  - iwt] , 

and therefore the growth rate of u is 

(5.5) 

This is, in general, different from the growth rate of the stream function, given by (5.4). 
The question then ariHes about the 'proper' measure for the growth of the disturbance. 
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FIGURE 1. Variation of gE with Q at various R for z = 0. 
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If one has experimental data to compare with the calculations, one must obviously use 
the same quantity as that which was observed. For the stability of the Bickley jet 
at low Reynolds numbers, Sat0 & Sakao (1964) do present some experimental results 
but they themselves point out the difficulty of comparing their results with theoretical 
predictions. In order to compare the present results with those obtained by the 
parallel-flow theory, a general measure of the strength of the disturbance as it develops 
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FIGURE 3. Variation of maximum growth rate with R. -, present results for gE(0)m.x;  
--_ , ( -  kOL)m,r based on parallel-flow theory; ---, results based on theory A. 

downstream is taken to be the mean kinetic energy density, averaged over time and 
integrated across the jet, defined as: 

where v is the y component of the disturbance velocity, and an overbar indicates an 
average over a period. 

For growth rate based on E, we should include a factor of a half in the definition to 
enable comparison with the other growth rates; that is, 

where 

1 1 dE 6 aA/axl gE(x)  = --- = -a,+2- 
2 E  dx A '  (5.8) 

6. Results 
For various values of R, w and streamwise distance x or x l ,  growth rates of the 

disturbance energy density, stream function and streamwise component of velocity 
were calculated. Most of the results presented here are, however, for gE only, since the 
other growth rates depend on the transverse co-ordinate as well. Also, extensive 
comparison with experimental data (Sato & Sakao 1964) is not possible. 

Figure 1 shows the growth rate of energy density at  x = 0 as a function of the distur- 
bance frequency at various Reynolds numbers and figure 2 shows curves of constant 
growth rates based on gE(0). For comparison sake, the latter also has neutral curves, 
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corresponding to k,, = 0, for the parallel-flow theory and also for a theory (hereafter 
called theory A) that accounts for only some of the non-parallel effects (Bajaj & Garg 
1977). The differences between the various theories are obvious. In figure 3 are plotted 
the maxima points on the curves of figure 1 and on similar curves for ( - 4,) based on 
the parallel-flow theory and theory A. The present theory yields a critical Reynolds 
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FIGURE 6. Variation of growth rates with streamwise distance for various 
frequencies at R = 40. -, g E ;  ---, ( - koi). 

0.28 

0.24 

0.20 

0.08 

0.04 

-0.04 

FIGURE 7. Variation of growth rates with streamwise distance for various 
frequencies at R = 50. -, g E ;  ---, ( -&). 

number, R, = 21.6 at x = 0, which agrees very well with the experimental observa- 
tion (Sato & Sakao 1964) that the Bickley jet is stable to infinitesimal disturbances 
below a Reynolds number of 20. In comparison, the parallel-flow theory and theory A 
yield lower critical Reynolds numbers. Ling & Reynolds (1973) found the Bicldey jet 
to be unstable at  d l  Reynolds numbers. However, they themselves doubt the validity 
of their theoretical prediction. 

Tqigures 4 to 7 show the v:iri:ition of v , ~  and ( -  kui) with streamwise distance for 
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FIGURE 8. Neutral curves (o w8. zl) at various R. 
- , based on g E ;  ---, based on kOi. 
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FIGURE 9. Variation of growth rates with transverse co-ordinate for R = 30 and o = 0.4 at 
z1 = 0, 0.4 and 0.8. -, g*, ; - - -, g,. 
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FIGURE 10. Variation of growth rates with transverse co-ordinate for 
R = 30 and w = 0.4 and 0.8 at x = 0. -, g*,; ---, gu. 

various w and R = 20, 30, 40 and 50 respectively. It is evident that while ( - kM), the 
growth rate based on the parallel-flow theory, is maximum at x = 0 and decreases as 
x increases, the growth rate of energy density for disturbances of low frequency 
(w <: 0.4) reaches a maximum at x > 0. For frequencies greater than 0.4, however, 
g, is also maximum at x = 0. Note that the abscissa in these figures is x1 = ex. 

Figure 8 shows the neutral curves, corresponding to both gE = 0 and k,, = 0, at 
various R. It is evident that the critical Reynolds number based on g, depends on the 
streamwise co-ordinate. Sato & Sakao (1964) do point out the difficulty in finding R, 
experimentally. This figure also shows that as x1 increases, critical Reynolds number 
and frequency decrease, e.g. for w = 0.4, R, = 21.6 at x1 = 0 (figures 2 and 3); for 
w = 0.23, R, = 16 at z1 = 0.75; and for o = 0-07, R,? 13 at x12: 3.0 (not shown). 
However, it is futile to compute results for lower w and R as the present analysis is 
only accurate upto O(E), where 8 = R-4. From the data provided in figures 4-7, one 
can also plot neutral curves (w vs R) a t  various streamwise locations, similar to those in 
figure 2 at x = 0. Figures 9 and 10 show the variation of the growth rate of the distur- 
bance stream function and streamwise component of velocity with the transverse 
co-ordinate at R = 30 for various w and xl. Similar behaviour is found at  other 
Reynolds numbers. It can be noted that, in general, as x or w increases, the growth 
rates, gv and g,,, decrease for almost all y. Also, the disturbance may pass through 
regions of growth and regions of decay. Moreover, the stream function of the distur- 
bance may be growing a t  some point in the jet while the velocity components are 
decaying. 
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7. Conclusions 
The spatial stability of the non-parallel Bickley jet to infinitesimal disturbances is 

investigsted. The solution takes into account the effects of transverse velocity com- 
ponent and the streamwise va,riations of the basic flow and of the disturbance ampli- 
tude, warenumber and growth rate. This makes the results quite different from those 
obtained by the parallel-flow theory. One of the differences is that the (spatial) growth 
rate becomes a function of the transverse as well as streamwise co-ordinate. Thus, the 
disturbance may pass through regions of growth and regions of decay. Another striking 
difference is that the growth rate is a function of the flow quantity involved, i.e. the 
stream function, velocity components, kinetic energy, etc. For example, the stream 
function may be growing at some point in the jet while the velocity components are 
decaying. This leads to different critical Reynolds numbers for different flow quantities. 

The present results are found to be in closer agreement with the experimental results 
than those found earlier by the parallel-flow theory or by a theory that accounted for 
only a fern of the non-parallel effects. 

The author is indebted to the reviewers for their valuable comments. 
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